determination of an optimized multi-sensor remote sensing index to promote real-time drought monitoring over the heterogeneous land covers

نویسندگان

مهسا خدایی

کارشناس ارشد مهندسی سنجش از دور، دانشکدۀ عمران، دانشگاه فردوسی مشهد روزبه شاد

استادیار، دانشکدۀ عمران، دانشگاه فردوسی مشهد یاسر مقصودی مهرانی

استادیار، دانشکدۀ ژئوماتیک، دانشگاه خواجه نصیر الدین طوسی مرجان قائمی

استادیار، دانشکدۀ عمران، دانشگاه فردوسی مشهد

چکیده

in this article, new index, the optimized synthetized drought index (osdi), is suggested for real-time monitoring of this phenomenon in areas with heterogeneous land covers. the precipitation, one of the important factors in drought, measured by ground stations and improved bytrmm satellite data. each of the three normalized moisture indices, including normalized difference vegetation index (ndvi), visible short-infrared drought index (vsd), and the surface water capacity index (swci), individually enter to principal component analysis (pca), with precipitation condition index (pci) and land surface temperature index (lst). themaincomponentsof these pca are definedassynthetized drought indices, called sdi1, sdi2, and sdi3.then, the performance of three output indices is evaluated by using the standardized precipitation index (spi) in 1 and 3 month scale.validation results indicate that the synthesized index of pca on the normalized vsdi, lst and pci, provides the best performance in real-time monitoring of drought.this index is called (osdi). then, 42 landsat7 images were employed to evaluate the ability of suggested indices inheterogeneous land. the three normalized indices of ndvi, swci and vsdi, as the only effective factor in different performance of sdi1, sdi2 and osdi, is produced by the spectral bands of landsat7 images and their performance in various lands covers were evaluated using spi index. high correlation between normalized-vsdi and one-month-spihas approved capability of osdi in real-time monitoring of drought in heterogeneous areas. osdi maps showed that in the provinces of tehran and qom of iran, in 2008, 2009, and 2014, a severe drought has occurred in central and south-east regions of tehran, and also at central and northern parts of qom.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DETERMINATION OF SENSOR LOCATIONS FOR MONITORING OF ORCHARDS PARAMETERS USING REMOTE SENSING AND GIS

Optimal management of the farm and increasing production efficiency can be achieved by collecting accurate and appropriate information from the fields. The aim of this study is to determine the location of soil moisture sensors in pistachio orchards. For this purpose, initial information was obtained using satellite image processing. Then, using clustering method the information was clustered t...

متن کامل

Evaluation of Land Use Changes order to Desertification Monitoring Using Remote Sensing Techniques

Introduction Trend of increasing natural resource degradation in many parts of the world, is a serious threat to humanity. Desertification is one of the manifestations of the damage that has already suffered as a scourge of many countries, including developing countries are. At present, remote sensing is one of technologies with timeliness data and accuracy suitable for monitoring land use c...

متن کامل

Monitoring drought using multi-sensor remote sensing data in cropland of Gansu Province

Various drought monitoring models have been developed from different perspectives, as drought is impacted by various factors (precipitation, evaporation, runoff) and usually reflected in various aspects (vegetation condition, temperature). Cloud not only plays an important role in the earth's energy balance and climate change, but also directly impacts the regional precipitation and evaporation...

متن کامل

Estimation of KBDI (Drought Index) in Real-Time Using GIS and Remote Sensing Technologies

reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state th...

متن کامل

Monitoring Meteorological Drought in Iran Using Remote Sensing and Drought Indices

Drought is a major environmental disaster in many parts of the world. Knowledge about the timing, severity and extentof drought can aid planning and decision-making. Drought indices derived from in-situ meteorological data have coarsespatial and temporal resolutions, thus, obtaining a real-time drought condition over a large area is difficult. This studyused advanced very high resolution radiom...

متن کامل

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
اکو هیدرولوژی

جلد ۳، شماره ۳، صفحات ۴۳۹-۴۵۴

کلمات کلیدی
[ ' i n t h i s a r t i c l e ' , ' n e w i n d e x ' , ' t h e o p t i m i z e d s y n t h e t i z e d d r o u g h t i n d e x ( o s d i ) ' , ' i s s u g g e s t e d f o r r e a l ' , ' t i m e m o n i t o r i n g o f t h i s p h e n o m e n o n i n a r e a s w i t h h e t e r o g e n e o u s l a n d c o v e r s . t h e p r e c i p i t a t i o n ' , ' o n e o f t h e i m p o r t a n t f a c t o r s i n d r o u g h t ' , ' m e a s u r e d b y g r o u n d s t a t i o n s a n d i m p r o v e d b y t r m m s a t e l l i t e d a t a . e a c h o f t h e t h r e e n o r m a l i z e d m o i s t u r e i n d i c e s ' , ' i n c l u d i n g n o r m a l i z e d d i f f e r e n c e v e g e t a t i o n i n d e x ( n d v i ) ' , ' v i s i b l e s h o r t ' , ' i n f r a r e d d r o u g h t i n d e x ( v s d ) ' , ' a n d t h e s u r f a c e w a t e r c a p a c i t y i n d e x ( s w c i ) ' , ' i n d i v i d u a l l y e n t e r t o p r i n c i p a l c o m p o n e n t a n a l y s i s ( p c a ) ' , ' w i t h p r e c i p i t a t i o n c o n d i t i o n i n d e x ( p c i ) a n d l a n d s u r f a c e t e m p e r a t u r e i n d e x ( l s t ) . t h e m a i n c o m p o n e n t s o f t h e s e p c a a r e d e f i n e d a s s y n t h e t i z e d d r o u g h t i n d i c e s ' , ' c a l l e d s d i 1 ' , ' s d i 2 ' , ' a n d s d i 3 . t h e n ' , ' t h e p e r f o r m a n c e o f t h r e e o u t p u t i n d i c e s i s e v a l u a t e d b y u s i n g t h e s t a n d a r d i z e d p r e c i p i t a t i o n i n d e x ( s p i ) i n 1 a n d 3 m o n t h s c a l e . v a l i d a t i o n r e s u l t s i n d i c a t e t h a t t h e s y n t h e s i z e d i n d e x o f p c a o n t h e n o r m a l i z e d v s d i ' , ' l s t a n d p c i ' , ' p r o v i d e s t h e b e s t p e r f o r m a n c e i n r e a l ' , ' t i m e m o n i t o r i n g o f d r o u g h t . t h i s i n d e x i s c a l l e d ( o s d i ) . t h e n ' , ' 4 2 l a n d s a t 7 i m a g e s w e r e e m p l o y e d t o e v a l u a t e t h e a b i l i t y o f s u g g e s t e d i n d i c e s i n h e t e r o g e n e o u s l a n d . t h e t h r e e n o r m a l i z e d i n d i c e s o f n d v i ' , ' s w c i a n d v s d i ' , ' a s t h e o n l y e f f e c t i v e f a c t o r i n d i f f e r e n t p e r f o r m a n c e o f s d i 1 ' , ' s d i 2 a n d o s d i ' , ' i s p r o d u c e d b y t h e s p e c t r a l b a n d s o f l a n d s a t 7 i m a g e s a n d t h e i r p e r f o r m a n c e i n v a r i o u s l a n d s c o v e r s w e r e e v a l u a t e d u s i n g s p i i n d e x . h i g h c o r r e l a t i o n b e t w e e n n o r m a l i z e d ' , ' v s d i a n d o n e ' , ' m o n t h ' , ' s p i h a s a p p r o v e d c a p a b i l i t y o f o s d i i n r e a l ' , ' t i m e m o n i t o r i n g o f d r o u g h t i n h e t e r o g e n e o u s a r e a s . o s d i m a p s s h o w e d t h a t i n t h e p r o v i n c e s o f t e h r a n a n d q o m o f i r a n ' , ' i n 2 0 0 8 ' , 2 0 0 9 , ' a n d 2 0 1 4 ' , ' a s e v e r e d r o u g h t h a s o c c u r r e d i n c e n t r a l a n d s o u t h ' , ' e a s t r e g i o n s o f t e h r a n ' , ' a n d a l s o a t c e n t r a l a n d n o r t h e r n p a r t s o f q o m . ' ]

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023